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SUMMARY

An analytical methodology is presented for calculating, to the first order,
the probability that a system will successfully complete its mission. The methodology,
which is quite transparent, is designed to yield results quickly and without the use of
a large computer. It is not intended to replace the formal, more accurate computerized

methodologies that use Monte Carlo simulation or numerical partitioning.

The probability of mission success is calculated by collapsing a network of
probabilities. Each network probability represents the probability of no failure of the
system in a failure mode that, either by itself or in concert with other failure modes,
would abort the mission. The fact that there is a probability of failure of the system in
a given failure mode reflects the uncertainty embodied in the system's capacity, or in the
demand placed on the system, or both. Systematic and random uncertainties are differen-
tiated. The systematic uncertainties are associated with the estimates of the capacity
and demand means, which are treated as random variables. The systematic uncertainties are

ultimately reflected as variability in the calculated probability of mission success.

The system failure modes that would abort the mission are grouped into sets
such that within each set it can be reasonably assumed that there is perfect dependency;
between sets, it can be reasonably assumed that there is statistical independency. Each
such set represents one probability in the system's probability-of-mission-success network.
Arbitrary correlation, reflecting the systematic uncertainty in the estimates of capacity

and demand means, is admitted between any two probabilities in the network.

The density distributions for capacities, capacity means, demands, and demand
means are assumed to be lognormal. The effect of this assumption and of other approxi-
mations inherent in the methodology are demonstrated by working illustrative problems
with both the presented methodology and Monte Carlo simulation. The applicable domain
of the methodology hereby established is sufficiently large to encompass many problems

of interest to analysts, designers, managers, physicists, and planners in the Defense

Nuclear Agency community.

The pre<ented methodology {or for that matter any methodology of the same
purpose) requires that systematic uncertainties be quantified using subjective
reasoning. |If a sponsor will not accept subjective estimates, then there can be no
application of the methodology. Most sponsors, however, will entertain the idea of sub-

jective estimates if the bases for these estimates are well documented.
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SECTION 1

INTRODUCTION

1-1 PURPOSE.

The purpose of this document is to present & first-order methodology for calcu-
lating the probability that a system will successfully complete its mission, to illustrate

the methodology, and to validate the methodology.

1-2 APPLICABILITY.

The methodology is directed to analysts, designers, managers, physicists, and
planners who are unaccustomed to working with statistics and probability theory. The users,
however, are assumed to have had an introductory course in statistics and probability
theory. The methodology, which makes use of closed-form solutions and is quite transparent,
is designed to yield results quickly and without the use of a large computer. It is not
intended to replace the formal, more accurate computerized methodologies that use Monte

Carlo simulation or numerical partitioning.

Within its specified applicable domain, the methodology yields quantitatively
accurate results. Outside its domain, it yields qualitatively accurate results. The
applicable domain is sufficiently large to encompass many problems of interest to the

Defense Nuclear Agency community.

1-3 BACKGROUND.

Either an explicit or an implicit probability-of-mission-success criterion is
imposed on the designing of a system, be it civil or military, small or large, simple or
complex. Each mission of the system would have its own criterion. A typical explicit

criterion would read:

The lower one-sided Q-confidence limit for the probability that the system
will successfully complete Mission X shall be at least PMSO.

Implicit criteria, by contrast, make use of such terms as '‘factor of safety,' '"'margin of

safety," and 'reserve capacity." Implicit criteria, which call for deterministic method-

ology, are not addressed here.
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The probability of mission success is calculated by collapsing a series-
parallel network of probabilities. Each network probability represents the probability
of no failure of the system in a failure mode that, either by itself or in concert with r
other failure modes, would abort the mission. The fact that there is a probability of
failure of the system in a given failure mode reflects the uncertainty embodied in the
system's capacity, or in the demand placed upon the system, or both. In general, both
random and systematic uncertainties are present. Random uncertainty cannot effectively
be reduced by gathering more data or by conducting research and development. Systematic

uncertainty, however, can be reduced by gathering more data or by conducting research and

development, since it reflects parameter estimation and mcdeling errors; i.e., it reflects )
our ignorance. The presence of systematic uncertainty prevents us from calculating the j
probability of mission success with 100% confidence. ‘

Refer to Reference 6 for additional background. *
1-4 ORGANIZATION,

This report is organized into nine sections and two appendixes. Section 2
explains how to calculate the mean, the random coefficient of variation, and the syste-
matic coefficient of variation of the system's capacity in a given failure mode and of the
demand placed on the system. Section 3 explains how to calculate the probability that
a capacity will exceed a single application of a demand. The methodology presented in
Section 3 is extended in Section 4 to the problem of repeated applications of demand.
Section 5 concludes that the methodology presented in Section 4 is, with a change of
notation, also applicable to a set of failure modes. Section 6 explains how to use the
methodology presented in Sections 2 through 5 to assess the probability of mission
success of an existing system. Section 7 explains how the reverse concept of assess-
ment, the allocation of the probability of mission success to an evolving system, is
accomplished. Finally, closing remarks are made in Section 8. References are given in

Section 9. Key derivations are given Appendixes A and B.

With the exception of Sections 5, 8, and 9, each section is organized into

four subsections: introduction of the subject, methodology, example problems solved by

the methodology, and validation of the methodology by re-solving the example problem with

Monte Carlo simulation.




SECTION 2

CAPACITY AND DEMAND

INTRODUCTION.

A system responding in a given failure mode is characterized by its current
capacity te resist failure and by the demand placed on the system. |In general, both the
capacity and the demand will be random variables. For our purposes, three descriptors are
sufficient to describe the capacity or the demand: (1) its mean (expected, or average)
value; (2) its random coefficient of variation* (cov); and (3) its systematic COV. Use
the equations given below to calculate these three descriptors for the capacity. Change
the notations used in these equations and use them to calculate the three descriptors for

the demand.

2-2 METHODOLOGY .

First, either implicitly or explicitly state capacity C symbolically in terms

of its (functionally) independent variables:

f(xI,... j ...xJ)

The first-order approximation of the mean of C s simplyf

u = flu ..o ,e..u )
C ( Xy xj X

where 1u,. is the mean of x,. Equation 2-2 is quite accurate, provided that the

nonlinearity in f(-) with respect to Xj, near u, , is not severe and that the
variability of xj is not large. |f required, the aécuracy of Equation 2-2 can be

increased by adding the second-order term:

“The standard deviation divided by the mean.

1‘See, for example, Reference 1 for the derivation of Equations 2-2, 2-3, and 2-4,




i where ozf/aij is to be evaluated at “x1’ “Xz’ ux3,...; ij is the COV of xj; 1
i and pij is the correlation coefficient for X; and xj. The square of the COV 1
of C is simply :
2
\
¢ Woou
J X 2 J J X. X, |
2 . i\ /of 2 i 7 oof  af -

S5¢ = Z " (.\x.) S ¥ Z Z 2 IX.  OX, L'ijéx.dx. (2-4)

j=n"C j j i=1 j=1 He i J i) }
i*j

2 Y

Equation 2-4 is quite accurate for S Notice that the estimates of Me and
Gc are dependent only on the means and COVs of the probability density distributions of i
the independent variables; distribution details enter into the higher-order terms, which )

are not used here.

Invariably, your values for the mean and COV of xj will be only esti-

mates.  In general, the error in your estimates of 8x.» the actual COV of xj,
J
will not be of consequence relative to the error in your estimate of the

Hy oy
J
actual mean of xj. Therefore, neglect the error in your estimate of 8y .» but

a count for your error in estimating u by assuming that ij’ your best esti-

X
mate of S is itself a random variable with actual mean pxj and actual COV

‘%.- Denote §y. as the random COV of x., and Ag. as the systematic COV of
273 J J

xj% In a similar fashion, account for the random and systematic uncertainty in your

functional form of C (Eq. 2-1). Equations 2-2, 2-3, and 2-4 now become

¢ = X x X 2-
C f(x1,...xj,...xJ) (2-2a)
J 2 J J
= - - - =2 2 f 2 - - of
c = f(x,, X . x,) + 0.5 X, —= 3 + 0.5 2: 2: X. X 8
1 j J I j 3x? i =& i7) Ux ij X, xj
] i)
(2-3a)
1
“This concept for accounting for your error in estimating 4, —and &, comes from ﬂ
i
Ang (see,for example, Ref.2). However, in what follows, we depart from Ang's
method of application of this concept. ?
8
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“If experiments have been performed, use A_

X, X,

J 3 .
y Ll s (2-ba)
= C ; X X xj

J

2
2 J
of 2
)(TX—) % L
T b=l
i

where &f is your best estimate of the COV that reflects the random variability in

the functional form of € for given values of xj,

%]

and the remaining symbols, con-
ventions, and restrictions are as previously defined. Use Equation 2-2a or 2-3a to

calculate the mean of C, and Equation 2-ka to calculate the random COV of C.

Use the following approximate expression to calculate the square of the
systematic COV of C:

g% 22 JJ %X

2 - j af 2 iT)  of of .

22 Z ., z: ) ay L L N -

\C ! '~(C )(‘R T Z_: }; = % k. UTRC% (2-5)

j=1 i j i=1 j=1 C i j i 7
i%]

where Aij is the COV you associate with how well X. represents “xj; AF is the
COV you associate with the modeling error in your functional form of C; ¢p77 s

ij
the correlation coefficient for ii and ij; and the remaining symbols, conven-

tions, and restrictions are as previously defined. Notice the similarity between
Equations 2-ka and 2-5.

Determine ;j’ dxj’ Sf, and pij from appropriate statistical data.
Choose Aij by quantifying ygur ""degrees of belief' about how well ;j represents
”xj’ the actual mean of xj.“ (Similarly for AF') Use the information provided
in Figure 2-1 to help quantify your degrees of belief. Use judgment to assign
values for “Ti' the correlation coefficient for Ri and ij.
It should not be overlooked that a large, deterministic computer code can
be used to calculate means and COVs with the ahove methodology. The code itself
would be used to calculate the first-order estimate of the mean and the partial
derivatives appearing in the equations for the COVs. The stringing together of these
partials for the actual calculation of the COVs and the second-order estimate of

the mean would be done outside the code.

% A /ATT, where n is the number of
experiments. j J
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2-3 ILLUSTRATIVE USE. Y
N
Calculate the mean, the random COV, and the systematic COV of the capacity g
i
2 b
1 . C = x" exp(0.50y) :
' ¥
where ?
X = 1.00 “
y = 0.50 !
Gx = 0.17 "
8 = 0.2 >
y 3 =
, 8 = 0.10 1%
i f !
- ¢
! A 0.03
oy A, = 0,11 j ]
¢ Y
{ A? = 0.15
1o = p = 0.50 ’
i xy yx 5 1
pi? - p?i = 0,00 :
’ First, calculate E, 6C’ and AE using Equation 2-2a to estimate the o
‘ mean of C. ' )
; 1}
Equation 2-2a.

c

- ——

Rz exp (0.50¥)

1.284

Equation 2-4a.

2 . 2 2 -2 2 - -
= + +
Gc éf hax 0.25y 6y + ypxydxdy + ypyxdxdy

e
I ™ O et AL e

0.3852




Equation 2-5.

2 2 2 2.2 . . -
= Az + haS + - _-AA- “A_A-
Mg g hAx 0.25y Ay + ypxyAxAy + ypyxAxAy
L

, = 0.1647

Now, calculate C, 6C, and AE using Equation 2-3a to estimate the mean
of (.

Equation 2-3a.

- . 2 - 2 -2.2
. + . . . § 8§
c X~ exp(0.50¥) |1 Sx + 0.125% éy +0 Snyéxsy +0 SOYX Oy

1.284 x 1.05

e

1.348

Equation 2-L4a.

. ————— e A oo~

2 _ 0.3852

¢ 1.052

0.367%

Equation 2-5.

e o———

2
2 _ 0.184

¢ 1.052

0.1562

. ———

t Since the second-order terms are only 5% of the first-order term, we can conclude that

: the estimates of E, Gc, and AE are, as will be seen below, relatively accurate and
' ‘ relatively insensitive to the assumed distributions of x, vy, f, x, y, and F.
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2-4 VALIDATION

In order to validate the methodology presented in this document, we have used
the Monte Carlo simulation technique to rework the illustrative problems. In this tech-
nique, pseudorandom variates are generated on a computer to form artificial samples. We
used the Marsaglia-Bray method (Ref. 3) on a Data General Eclipse $/130 computer to
generate pseudorandom normal and lognormal deviates. Cycling of the deviates was

required for some of the problems because of inadequate word length on the computer.

In our simulations for the illustrative problem presented in Section 2-3,
an outer loop of size 1000 controlled the generation of the systematic deviates. For
each set of systematic deviates, an inner loop of 1000 sets of random deviates was
collected. In our first simulation, all distribution models (x, y, f, x, vy, F) were
assumed normal. The results were C = 1.339, 6C = 0.378, and AE = 0.152. OQur method-
ology, which makes no assumption as to distribution, yielded C = 1.348, 6C = 0.367,

and A s 0.156. The agreement is seen to be quite good.

In our second simulation, all distribution models except f and f were
changed to lognormal to test the sensitivity of the results to the assumed distribution
models. The results were C = 1.34k, Gc = 0.399, and AE = 0.153. It is seen that
the assumed distributions of x, vy, f, x, y, and f do have an influence on ¢, S¢o
and AE, but that it is small. In general, this influence will be small regardless of
the distributions, provided the second-order term in Equation 2-3a is small compared to

the first-order term.
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SECTION 3

CAPACITY WILL EXCEED DEMAND

3-1 INTRODUCTION.

Consider a failure mode where the system's capacity is C under the demand O.
The probability that € will exceed D can be calculated with 100% confidence if you
know the distribution, the true value of the mean, the random COV, and the functional
form of C and D, that is, if AE = Aa = Az = A? = 0. For lognormal distribution

fe D
of C and D, this probability is precisely

2
In EE‘ L {2
i "Dy 1+ sé
P(C>D) = ¢ (3-1)
2 2
‘hn(l + Gc)(l + GD)
where
uc = Mean of €
UD = Mean of D
é =
C COV of C
8 =
D COV of D
®(£) = (Cumulative probability of the standard normal variate ¢

(see Table 3-1)

However, for the realistic case of nonzero A's, P{C > D) itself becomes a random
variable, in the Bayesian sense, with expected value P and systematic COV AP.
In what follows, we elect to write Q(P > Po) for the probability that P > Po, and
to read Q(P > Po) as "our confidence that P exceeds PO.“

This section shows how to calculate 5, AP’ and Q(P > Po) for log-
normal distribution of €, D, C, and D and for functionally and statistically
independent C, D, E, and D. However, the methodology will yield reasonably

accurate results for other unimodal distributions when 5, Po’ and Q are near 0.5,

say, 0.01 < (P, P @ < 0.99.
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METHODOLOGY .

*
Calculate the expected value of P(C > D) using the following equation:

_ 2 2
e (1+65) (1 + ad)
_ D (1 + 6%) h + A%)
P(C>D) = ¢ - - - (3-2)
‘/(1 +71°) (1 + sc)(1 + GD)
where
¢ = Your best estimate of wug, the actual mean (average, or ]
expected) value of C (see Eqs. 2-2a and 2-3a) i
D = Your best estimate of up, the actual mean (average, or
expected) value of D
Az = COV that reflects how well ¢ represents uc, the actual
C
mean of C (see Eq. 2-5)
AB = COV that reflects how well D represents up, the actual
mean of D
¢(g) = Cumulative probability of the standard normal variate &£
(see Table 3-1)
Gc = COV that reflects your best estimate of the random nature
of C (see Eq. 2-4a)
GD = COV that reflects your best estimate of the random nature
; of D
;.
in 1+ af) (1 + o3)
! C D "
o T = ( 2 2 ()‘3)
vy Inll + éc)(l + GD)

Note that the ratio C/D is, to the first order, the mean factor of safety. For

small COVs (i.e., 6% << 1, 6% << 1, Aé << 1, and A% << 1), Equation 3-2 reduces

to

*
The derivation of Equations 3-2 and 3-5 is given in Appendix A.




1n(C/D)

’/(1 + Tz)(sé + 5[2))

P(C > D) ¢

where

(3-3a)

7 37
AE* 85

7 2
52 + o2

Equation 3-2a is displayed in Figure 3-1,

The median value of P(C > D) s

P(C >0) = ®(k§ Vi o+ T2) (3-4)

where P = ¢(k§). With the aid of Equation 3-2, Equation 3-4 becomes

2
. H (1+ 6D>(1 + A%)
N (1 + 52\ (v 2
P(C>D) = o 1+ <)t + o) | (3-5)

‘/In(l + 65)(1 + 5[2))

Use Figure 3-2, or the following approximate expressions, to determine
the systematic COV of P(C > D):

2 2 2

2 . T 1 +7

Ay = exp(-k- . ————————-) for T < 0.7 (3-6)
P ZvPZ(l + T2) P % 2

R AT 1.327770-2155

, . (0.25 - — cot V1 + 2T ) (1 - P)
AL = u = : for T > 0.7 (3-7)
P p2

.

dUnfortunately, a closed-form expression for Ap could not be derived. The deri-
vation of Equations 3-6 and 3-7 is given in Appendix B. It should be noted that
Equation 3-7 is partially empirical.
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Use the following equation to calculate your confidence that

P(C > D) » PO:

't
“»
=~
acdl
+
—
]
X
R
{o]

P >p) = - (3-8)

(3-8a)

it

(=]
—
~
n * I
- !
>
-

(o]
g

Equation 3-8a is plotted in Figure 3-3 for an illustrative value of P and for
various T. Note that Equation 3-8 plots as a straight line in normal-normal
probability space.

The following alternative form of Equation 3-2 is better suited for

calculating the required mean factor of safety of a failure mode:

(l + 62)(1 + A%)

2 2 2
—('l . Gg)(l - A%) exp k'_)‘/(l + 1%) In(1 + &C)(1 + 50) (3-9)

ot o
"

For small COVs, Equation 3-9 reduces to

= exp kﬁ vq?’+ TZ)(ég + Sﬁ) (3-9a)

ol | ot

3-3 ILLUSTRATIVE USE.

Calculate the probability that capacity will exceed demand, where

C = 1.28 §, = 0.21

ot
L]

0.55 AE

0.39 AB 0.24

0.16

*Substitution of the lower one-sided Q-confidence limit for uc/uD into Equation 3-1

yields, upon rearranging terms, Equation 3-8.




r
: First calculate the parameter T (Eq. 3-3):
/In(l + 0.16%) (1 + 0.24%)
T = <‘ — — 0.663
' In(1 +0.397) (1 + 0.217)

Next, calculate the expected probability of no failure (Eq. 3-2):

n 1.28‘\/(1 + 0.212)0 + 0.162)

i} 0.55 2 2
F(c > D) (1 +0.397)(1 + 0.247)

|
©

\/21 + 0.662)1n(l + o.392)(1 + 0.212)

PO

${1.51)

0.935 (Table 3-1)

Next, for the purpose of later reference, calculate Aﬁ (Eq. 3-6):

N

| 2 2
i o2 - 2.663 —Exp | - 1.512 ( 1 +0.663 2)
27 x 0.935° x (1 + 0.663) 1 + 1.5 x 0.663

0.08772

Next, calculate three points on the Q vs. Po curve using Equation 3-8:

: 1.51‘/1 +0.66% - kp

- [o]
Q =0 0.66

[

1.81 - kP
o

) ¢ 0.66
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Po Q
0.5 0.997
0.965 0.5
0.999 0.26

Plotting these three points in normal-normal probability space yields the
solid line shown in Figure 3-4. The open and filled circles are the data points that
result from a reworking of this same problem by Monte Carlo simulation, as will be dis-

cussed in the next subsection.

3-4 VALIDATION.

In order to validate the methodology presented in Section 3-2, Monte Carlo
simulation was used to rework the illustrative problem (see Sec. 2-4). An outer loop of

1000 and an inner loop of 855 were used.

In our first simulation, all distribution models (C, D, E, 5) were assumed to
be lognormal, like our methodology. The results were P = 0.938 and A = 0.0883. Our
methodology, which yielded P = 0.935 and AP = 0.0877, is in excellent agreement. Some
of the percentiles for the Q function for this simulation are indicated in Figure 3-4

by the filled circles.

In our second simulation, all distribution models were assumed to be normal
to test the sensitivity of the results to the assumed distribution models. The results
were P = 0.900 and AP = 0.0932. These results were indicated by the open circles
plotted in Figure 3-4. For most applications, the disparity shown in Figure 3-4 for Q
greater than about 0.1 would be acceptable.
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Table 3-1.

Tabulated cumulative probability of
the normal distribution.

o A "~

—_— = O O O O O O o
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€

.090
.576
.326
.960
.645
.282
.036
.842
.674
.524
.385
.253
.126
.000
. 126
.253
.385
.524
.674
.842
.036
.282
.645
.960
.326
.576
.090

O O O O O O O O O O O O O O 0O O 0O 0O O O O 0o o O o o o

©
—~
[l
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.001
.005
.010
.025
.050

100

. 150
.200
.250

300

. 350
.400
.h50
.500
.550
.600
.650
.700
.750
.800
.850
.900
.950
.975

990

-995
-999

“For a more extensive
and probability.

table, refer to a textbook or a handbook of statistics
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Figure 3-2. Systematic COV of P(C > D).
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SECTION 4

CAPACITY WILL EXCEED REPEATED DEMANDS

4= INTRODUCTION .

This section extends the results presented in Section 3 to the case of
repeated application of demand. Capacity or demand or both may change randomly or
deterministically from demand application to demand application. The set of demands
may be deterministic, perfectly dependent, statistically independent, or partially
dependent. All the demands of a deterministic set are known. None of the demands are
known in an independent set. Given one demand, the other demands in a perfectly depen-

dent set become deterministic. These same remarks apply to the set of capacities.

The probability that the system's capacity in a given failure mode will exceed
repeated demands is shown in Table 4-1 for each of these states of dependency (after
Ref. 4). For states where P is bounded and Gé is either large (demands are, in
effect, deterministic) or small (capacities are, ?n effect, deterministic) compared to
52

Dy’

the error introduced when 65 is neither large nor small compared to 6% . Notice
n

n
that if the demand set has a common density distribution (i.e., a common mean and COV)

the appropriate deterministic case is approximately correct. Fiqure b-1 shows

and the capacity set has a common density distribution, the entries in Table 4-1 simplify

to

P = P, = P (4-1)
N

P~ [lep = ¢ (4-2)
n=1

PO S (4-3)

Since Pn is a random variable, in the Bayesian sense (see Sec. 3), the
resul tant probability P is also a random variable. How to calculate P is shown

be low.
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4-~2 METHODOLOGY.

For those dependency states where P 1is equal to or can be approximated
by P_,, calculate P and AP as follows:

P = P, (4-4)

A, = A (4-5)

where ﬁn' and APn' are calculated using the information given in Section 3. For

those states where P is equal to or can be approximated by ;% Pn’ calculate P

and 1\P as follows: n=1

N
P = 17 (4-6)
n=1 N
2 N 2 N
AP=Z—:1AP+ZZ°P'EAPAP G-n
n= n n=1 m=1 nm n m
n#m

where En and AP are calculated using the information given in Section 3, and
n - -
Pp p is the correlation coefficient for P, and Pn- When neither Equation b-4
nm
nor Equation 4-6 is a reasonable approximation to the truth, interpolate between the

two.

The correlatinn coefficient Pp p is equal to zero if En and € are
_ - nom
independent and Dn and Dm are independent. For other dependency states, calcu-

late 95 p o as follows:
nm

o_ _ 2 2 - 2 2
Cc‘/ln(l+Ac)ln(1+Ac)+pDD ln(1+AD)]n(1+A5)
. nm n m nm \ n m
p -
PP
nm 2 2 2 2
A‘IIn(l + AC ) (1 + Aﬁ )ln(1 + AC )(1 + Aﬁ )
n fn m m

(4-8)
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Calculate Q(P > Po) using Equation 3-8, where T is obtained by entering
Figure 3-2 with P and L Note that for P # Pn" QP > Po) is approximate and
T has no physical meaning.

4-3 ILLUSTRATIVE USE.

Calculate the probability (Po vs. Q) that the system's capacity in a given
failure mode will exceed four applications of demand. Assume Cl’ C2, C3, and Ch are
statistically independent, but have a common distribution function. Assume the same
independence and commonality for the demands and the expected*demands. However, assume

that the expected capacities are perfectly dependent. Assume

cC = 1.28 5, = 0.21
b = o0.55 Az = 0.16
8§, = 0.39 5 = 0.2k

From Table 4-1, we know that

n
P = J; P, = P1P2P3Ph

From Section 3-3, we know that

these are the same parameters used in Section 3-3.
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’

Substituting into Equations 4-6 and 4-7 yields

0.9354 = 0.764

ot
|

oN

b x 0.08772 +12 x pp 5 X 0.08772
nm

The correlation coefficient °p p is calculated using Equation 4-7 with °5 b = 0

n
and Pt = 1.0. Equation 4-7 yTelds pz - =0.311 and AP becomes 0.244, upon
., n°m Pan
substitution for A
nm

Entering Figure 3-2 with Ay = 0.24k and P = 0.764 yields T = 0.7. Enter-
ing Equation 3-8 with T = 0.7 and P = 0.764 gives

0.72 ‘/1 +0.7% - kp
(o]

Q = 9

0.7

0.88 - kp

= [0 o

0.7

Ps | Q
0.5 0.90
0.81 0.5

The straight line shown in Figure 4-2 was constructed from the above data.

L-4 VALIDATION.

In order to validate the methodology presented in Section 4, Monte Carlo
simulation was used to rework the illustrative problem. An outer loop 9f 139 and an

inner loop of 855 was used. All distributions were assumed to be lognormal. The {

results were P = 0.783 and Ap = 0.202. Some of the percentiles for the Q function
are shown in Figure 4-2 as the filled circles. The agreement between the two solutions

is reasonably good.
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(a) Statistically Independent capacities
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Figure 4-1. Probability that capacity will exceed repeated
demands: One failure mode.
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SECTION 5

FAILURE-MODE SETS

This section extends the results presented in Section 3 to a set of failure
modes. Only one application of demand per failure mode is considered. Capacity or
demand or both may change randomly or deterministically from failure mode to failure
mode. The set of capacities may be deterministic, perfectly dependent, statistically
independent, or partially dependent. All the capacities of a deterministic set are

known. None of the capacities of an independent set are known. Given one capacity, the

other capacities in a perfectly dependent set become deterministic. The same remarks

apply to the set of demands.

The probability that all the capacities in an M-failure-mode set will exceed
their demands is shown in Table 5-1 for each of these states of dependency (after Ref. 4).
Noting the similarity between Tables 4~1 and 5-1, we conclude that the methodology pre-
sented in Section 4 for a system responding in a given failure mode to N repeated

demands is, with a simple change of notation, also applicable for an M-failure-mode set.
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6-1

mission success of an existing system or with allocating the probability of mission
success to the failure modes of an evolving system. The former task, which is by
far the easier of the two, is addressed here. The task of allocating the probability

of mission success is addressed in Section 7.

6-2

existing or defined system:

What each

6-2.1

Steps 2 through 7 for each scenario.

SECTION 6

ASSESSMENT

INTRODUCTION.

You will be faced either with assessing (synthesizing) the probability of

METHODOLOGY.

Follow these eight steps to assess the probability of mission success of an

t. Develop demand scenarios. Complete Steps 2 through 7 for each
scenario.
2. Identify the system's failure modes.

3. Calculate the system's demand applied in each failure mode.

4, Calculate the system's capacity in each failure mode.

5. Calculate the probability of no failure of the system in each failure
mode .
6. Construct the series-paralle! network of no-failure probabilities.

7. Calculate PMS vs. Q.
8. Draw PMS vs. Q envelope.

of these eight steps entails is outlined below.

Step 1: Develop Demand Scenarios.

Exercise demand options (if any) to develop demand scenarios. Complete
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6-2.2 Step 2: |Identify Failure Modes.

Identify all the failure modes of the system that can abort the mission.
This task will be made easier if the system failure modes are categorized and each

category is addressed in turn.

6-2.3 Step 3: Calculate Demand.

Using the methodology presented in Section 2, calculate the mean, random CQOV,
and systematic COV of the demand that is applied to the system in each failure mode
identified in Step 2. |If the system is subject to repeated demand application, calcu-

late the demand descriptors for each application.

6-2.4 Step 4: Calculate Capacity.

Using the methodology presented in Section 2, calculate the mean, random COV,
and systematic COV of the capacity of the system in each identified failure mode. If
the system is subject to repeated demand application and the canacity changes from

demand to demand, calculate the capacity descriptors for each demand.

6-2.5 Step 5: Calculate Prcbability of No Failure,

Using the methodology presented in Secticns 3 and 4, calculate the expected
probability of no failure of the system and its associated systematic COV in each

identified failure mode. Account for repeated demand applications, as required.

6-2.6 Step 6: Construct System Network.

Construct the series-parallel network of the system failure mode probabili-
ties. (Note that the expected vilues and systematic COVs of these probabilities were
calculated in Step 5.) Do this by grouping the failure modes into sets such that
within each set it can be reasonably assumed that there is perfect dependency; between
sets, it can be reasonably assumed that there is statistical independence. Accomplish
this step under the assumption that there is zero systematic uncertainty throughout the

system.
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6-2.7 Step 7: Calculate PMS.

The system's probability of mission success (PMS) is calculated in a
manner similar to the calculation of capacity or demand (see Sec. 2). Accordingly,

the actual PMS is represented by

PMS = g(P],...,Pj,...,PJ) (6-1)

where P. is the actual probability of no failure of the system in the jth set of
failure mode probabilities identified in Step 6. The first-order approximation of the

expected value of PMS is simply"

2 g(P.,...,P.y...,P 6-2
PHS g(P1, ,Pj, , J) (6-2)
where ﬁj is the expected probability of Pj calculated in Step 5 and the function g
is the mathematical equivalent of the series-parallel arrangement of P1, P2’ P3,...
constructed in Step 5. Calculate PMS using the well-known rules for manipulating

series-parallel arrangements of independent probability events.

Calculate the systematic COV of PMS (i.e., the COV of PMS) using

- 2 2 - -
22, XJ:(P' )(:\g ) 2, )‘i\ ZJ: ij 29 g A (6-3)
Ap . ' ::E: KA ‘ | 29 o5 s _
" L L YA B = IV U T LA LS I
%]
where the partial derivatives are to be evaluated at 5], 52, 53,...; Ap_ is the

. . . . J . .
systematic COV of Pj calculated in Step 5; Aé is the systematic COV associated with
the modeling error in your network; and pﬁ,ﬁ, is the correlation coefficient for ﬁi

i
and Pj' Calculate "E.P using Equation 4-8§,
ij

Finally, calculate your confidence that PMS exceeds PHSo using

/ 2
o [ VT Kens oot
Q(PMs - PHS )} = b .

“Add the second-order terms as required.




Obtain T by entering Figure 3-2 with PMS in place of P, and BpMs in place of Ap.

Note that Equation 6-4 plots as a straight line in normal-normal probability space.

6-2.8 Step 8: Draw PMS Envelope.

Using the results of Step 7, plot the PMS0 vs. Q line for each demand
scenario on lognormai-lognormal probability paper. The left-most envelope of these
lines is the sought-after probability of mission success vs. confidence relationship

for the particular mission under consideration (see Fig. 6-1).

6-3 ILLUSTRATIVE USE.

The seventh step of the above methodology is illustrated below for the system

network shown in Figure 6~2 and for

51 = 0.99
P2 = P3 = 0 9
Ph = 0.95
AP = 0-0“
1
A = A = 0.1
P2 P3
A = 0.02
Py
Aa = 0.02
Ve p = P55 = 1.0
P2P3 P3P2
All other o =z 0.0

“T has no physical meaning for systems comprising two or more independent failure modes.

38




—— g s B AS———

Calculate

PMS = PP, + P\PPL ~ P PP
Calculate PMS using Equation 6-2:
PRS = PP+ PP,B, - PP,PP,
= 0.94
Calculate the partial derivatives in Equation 6-3:
3PMS == ==
| P,Py - P,PsP, = 0.0855
o
PMS| _ 55 _5535 .
", = PP, - PRSP, 0.0941
o
aPMS! 5 5= =
8P3 = Ph P]P2P4 0.1036
o
aPMS _ = 5= _5385 =
5, = Py + PP, - PPPy = 0.9891
o

Substituting the above partials into Equation 6-3 yields

2
0.9

2 2
_ 2, (0.9 2 2 . (0.9 2 2
fpyg = 0-02°+ (“‘E) 0.0855° x 0.04° + (BT§E) 0.0941° x 0.1

+ (%ﬁ%;) 0.

+ 0 9r—————n-0.0941 x 0.1036 x 0.1 x 0.1

= 0.034>

PMS using Equation 6-1:

10362 x 0.1% (%-%%) 0.9891% x 0.022
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Determine T by entering Figure 3-2 with PMS = 0.94 and APMS = 0.034:

T = 0.28

Finally, use Equation 6-4 to obtain the solid line plotted in Figure 6-2.

6-4 VAL IDATION.

In order to validate the methodology presented in Section 6-2, the illustrative
problem presented in Section 6-3 was reworked using binomial models as a basis for simu-

lation. This simulation technique is explained below.

If ﬁi denotes the population mean and A denotes the coefficient of

P.
|
variation of an estimate (mean) from a sample of size Ni from the ith population, then

= - 2
(1 - Pi) / PiNi = APi

Thus, from the problem input (Sec. 6-3), we infer

N, = 6.31 = 6
N, = 1111 =
Ny o= 111 =
N, = 131.58 =132

For each set of possible sample outcomes (51, 52’ 53, Sh)’ where Si denotes the number

of successes in Ni trials, the system reliability estimate will be given by

PHS = PiP, + P PP, — P PP,

S. /N,
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The probability of this PMS value is given by

[

: S, N.-S,
(:i) pola-py
i=1,2,4\"

where

Ni! / Si!(Ni - Si)!

Note that the i = 3

S, = 53).

term is ignored in the cell probability, since CH 1.0
. 23
(i.e.,

This binomial model yields PMS = 0.932 and Apys = 0.0348.

ology yielded PMS = 0.94 and Boms = 0.034.) Some of the percentiles for the Q

function for this model are indicated in Figure 6-2 by the filled circles. Although
the Q curve for the binomial model is not linear, the agreement with the presented
methodology is reasonably good.

(Our method-

The general remarks about the applicable domain made in Sections 2-4 and 3-4
also apply here.
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Figure 6-1. Probability-of-Mission-Success envelope.
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SECTION 7

ALLOCATION

7-1 INTRODUCTION.

The reverse of assessment of the probability of mission success (PMS) of an
existing system is the allocation of the PMS to the failure modes of an evolving system.
Although, in concept, allocation is the reverse of assessment, the methodologies by

which each is achieved are quite similar, as will be seen in this section.

7-2 METHODOLOGY.
Follow these 11 steps to allocate the probability of mission success (PMS):
1. Develop demand scenarios. Complete Steps 2 through 9 for each scenario.
2. ldentify the system failure modes. {

3. Calculate the system's demand applied in each failure mode. j

4, Construct the series-paraliel network of no-failure probabilities.
5. Select a trial value of PMS.
6. Allocate PMS to each failure mode.

7. Calculate for each failure mode the mean capacity required to satisfy

the allocated share of the PMS.
8. Calculate Apyg, the systematic uncertainty of PMS.

9. Calculate PMS. Repeat Steps 5 through 9 until the final and calculated
PMS's are acceptably close.

10. Identify the critical mean capacity in each failure mode.

11. Write, for each failure mode, the deterministic design specification for

the identified critical mean capacity.

Steps 1, 2, 3, and 4 are identical to the first four steps of assessment (see Sec. 6).
Steps 8 and 10 have their counterparts in assessment and need not be discussed. Steps 5

6, 7, 9, and 11, however, are unique to allocation. Step 11 requires no explanation.
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7-2.1 Step 5.

Select a trial value of the expected probability of mission success, PMS.

Solving Equation 6-4 for PMS and finding its maximum and minimum values with respect to
T vyield these bounds:

— 2 2
PHS_ < PHS 5 o kPMS°+ kQ (7-1)

where the probability that the system will successfully complete the mission is at

least PMSO, stated with Q confidence. Use Equation 7-1, with criteria PMSo and Q,

as an aid in selecting a trial value of PMS.

7-2.2 Step 6.

The crux of Step 6 is to allocate the PMS in such a way that maximum cost

effectiveness is achieved for the system. In general, this optimum state will be

achieved by allocating the largest shares of the PMS to those failure modes that exhibit
the smallest cost increments per share of the PHS, and vice versa. See Reference 5
for an introduction to optimizing allocations.

7-2.3 Step 7.

Calculate for each failure mode the mean capacity required to satisfy the
allocated share of the PMS. Use Equation 3-9.

i 7-2.4 Step 9.

Calculate PMS using the following manipulated form of Equation 6-4:

! TkQ + kPMS
PHS = o ———2C

1 + T2

(7-2)

where T s obtained by entering Figure 3-2 with the trial value of PMS and the

Spns calculated in Step 3, and PMSo and Q are given criteria values.

through 9 until the trial and calculated PMS's are acceptably close.

Repeat Steps 5

war
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7-3

example

ILLUSTRATIVE USE.

The following example illustrates Steps 5, 6, 7, and 9. Validation of this

is not necessary.

Step 1.

Only one demand scenario is assumed applicable for purposes of this illustra-

tive example,

and 2:

Step 2.

Only two failure modes are assumed significant.

Step 3.

Assume that we have determined the following demands for Failure Modes 1

5] = 28 units b, = 13 units
601 = 0.18 GDZ = 0.20
A5| = 0.15 ABZ = 0.06
step b.

The two failure modes are assumed to be in series.

Step 5.

Assumed criteria

PMSo = 0.5

Q 0.9

Therefore, from Equation 7-1, we obtain

0.5 < PMS < 0.9

Try PMS = 0.7

ety el B s i M e b B cnitnlle e
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Steps 6 and 7.

Assume, for purposes of this illustrative example, that

Cost « C‘ + C2,

where E] and EZ are the expected capacities of the system in Failure Modes 1 and 2,

respectively. Moreover, assume that we have determined that

8 = 0.09 § = 0.18

AE = 0.15 AE = 0.12

Equation 3-3a yields T, = 1.0 and T, = 0.5. Equation 3-9a yields

1 2
C, = 28 exp(0.29 ks )
1 P1
C2 = 13 exp(0.30 kﬁ )
2
Thus,
Cost = 28 exp(0.29 ks ) + 13 exp(0.30 k= )
1 P2
For PMS =P P, = 0.7, it can be verified that cost is approximately minimized for

P, =0.78 and P, =0.90. Thus, C. = 35 units and Ez = 19 units.

1

Step 8.
Entering Figure 3-2 with T, =1 and 51 = 0.78 yields 4, =0.27. Ina
similar fashion we find Ap = 0.094, From Equation 6-3, !
2
A%E = Ag +A§ = 0.2724-0.091«2 = 0.2862
‘ 1 2
47




Step 9.

Entering Figure 3-2 with Boms

Finally, Equation 7-2 yields

0.7 x 0 + 1.282

PMS = ¢ =
Vl +0.72

Step 5a.

Try PMS = 0.85,

Steps 6a and 7a.

Thus, C

e e 4 A o

For PMS = 0.85, 51 = 0.90 and
= 41 units and 62 = 21 units.
Step 8a.

Entering Figure 3-2 with T =1

PMS = 0.7 yields

0.286 and

0.85 # 0.7

P, = 0.94

and P = 0.90 vyields

similar fashion we find AP = 0.064. From Equation 6-3,

2
' 2 2 2 2
| sly = 0.1552 + 0.0647 = 0.168
S
j Step 9a.
| Entering Figure 3-2 with Ap,c = 0.168 and PMS =
i ! Equation 7-2 yields PMS = 0.85 (trial and calculated PMS ident
, Step 10.
61 = L1 units
{ Ez = 21 Units
e
| )
i
' ‘
L8
L e
. i

A =

ical).

T=

0.85 yields T =

0.7.

approximately minimize cost.

In

0.7.

a




b SECTION 8

CLOSING REMARKS

a The applicable domain of the methodology is summarized as follows. The
calculation of E, GC, and AE will be relatively accurate and insensitive to the dis-

tribution details of the independent variables of C if the second-order term in the
expression for C (Eq. 2-3a) is small compared to the first-order term. (The same
remark applies to D, GD, and AB') The calculation of P(C > D) will be relatively
accurate, provided C, €, D, and D are unimodal in distribution and P and Q are
near 0.5, say 0.01 < (P, Q) < 0.99. C, C, D, and D will exhibit unimodal distribu-
tions if their independent variables exhibit unimodal distributions or if there are many
independent variables. The calculation of Q(PMS > PMSO) will be relatively accurate,

provided the second-order term of PMS is small and PMS and Q are near 0.5, say

: 0.01 < PMS, Q < 0.99.

We have elected to write Q{P > Po) for the probability that P > PO, and to

read Q(P > Po) as '""Our confidence that P exceeds Po.“ The use of confidence in

this context has as its precedent the statement of the one-sided confidence limit for

the estimate of a model parameter in classical statistics. Thus, strictly speaking,

Q(P > P ) should be read '"The lower cne-sided Q-confidence limit for P s Po.“*
o
Our methodology (or for that matter any methodology of the same purpose)
requires that the systematic COVs be quantified using subjective reasoning.+ If the
' sponsoi of the application of the methodology will not accept subjective estimates, then
i . there can be no application. Most sponsors, however, will entertain the idea of subjec-

b tive estimates if the bases for these estimates are well documented.

. Finally, it should be remarked that admitting even less general definitions

i of the terms ''system’ and ''mission'' than are normally held {or discarding the concepts of
'system'' and ''mission' altogether) gives the preserted methodology, or gt least portions
of the methodology, quite general applicability. For example, the methodology could be

applied to cost estimating, to scheduling, and to RDT&E planning.

“These remarks are also applicable for Q(PMS > PMSO).

“in the rare cases where specific experiments have been performed, systematic COVs can
be calculated.

" h9
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APPENDIX A

DERIVATION OF EQUATIONS 3-2 AND 3-5

Suppose we know perfectly the ''random'' standard deviations o. and o, of the

c D

normal distributions of capacity and demand, respectively, but that the means u. and

u

c

D have an uncertainty represented by normal distributions with ''systematic'' standard

deviations Sc and SD in the respective unbiased estimates C and D. Let

02 og + os
2 2,2
S = SC + SD
T = S/o
i = pc - llD
m C-D
A 2 m/o
f(z) - (Zn)-o'5 exp(-zz/Z)
z
' e(z) = I f(t) dt
\ Then #(A) is known to be the median reliability,

reliability, R.

" THEOREM A-1: R = «x»(A/Vl + Tz)

Proof: The reliability is ¢(u/0), where u

and standard deviation S. This is written as

y o= N(m, s?)

R. The problem is to find the mean

is normally distributed with mean

m




1f we transform

X =

x = (y-m/s
the reliability becomes
o(Tx + A).
Then
R = J o(Tx + A) f(x) dx
R/ = J’ £(Tx + A) f(x) dx
= (211)-1 J. exp(-%(Tx S xz}/Z) dx.
Transform
w = le+T2+AT/ 1+ 12
Then
JR/on = (2m)7! f exp(-{u? + AZ7(1 + T} /2) dw/\h + 72
= f2n(r + TOFO exp(-AT200 4 TZ))I Flw) dw
- f(A/W + TZ)/ 1+ T
' R=¢(A/1+T2)+K
52
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N(O, 1)

by the transformation
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Where K denotes an arbitrary constant of integration. Since R=0.5 when
A = 0, we have

0.5

¢(0) + K

K
]
o

QED.

Suppose now that capacities and demands are lognormally distributed, not
normally distributed.h Let

2z = log (capacity) = N(u, 02)
. . 22
THEOREM A-2: The nth moment of capacity is exp(ny + n"0"/2)

Proof: Let x = N(0, 1), and let El[g] denote the expected value of g.

m E[C") = E[e®] = Elexp((xo + u) n)]

= (Zn)_o'sj‘ exp((xvo + u) n) exp(-xz/z) dx

Let
y = x-an
Then
mo= (20)70-2 _[::exp(-yz/z + o%n2/2 + un) dy
= exp{np + n202/2)
Corollary: E[C] = exp(y + 02/2).

*
At this point we should note that the preferred procedure is to transform all

observations by z = log C and work with the transformed sample, if this sample

passes a goodness-of-fit test for normality. The remainder of this Appendix would
then be unnecessary.
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Corollary: If & s the coefficient of variation of C, then

4]
"

Q
"

Note that 62

R

o + 04/2 + 06/6, small o. Also 8 =0 +o0

2 o 2i[2
mz/m] = |m2 mll/mI
2 2 2 2 2 2
,exp(Zu + 207) - {exp(u + 0 /2)} ]/{exp(u + 0%/2)} = exp(cf) -1
log(1 + 62)

2

Corollary: The third central moment is

[H

3

m3 - 3m,m, + 3m? - m]

21
exp(3p + 302/2){exp(302) -3 exp(oz) + 2}

m?{3ol+ + 406}, for small o.

Corollary: The fourth central moment is

™y

ne

Let C
n

Corollary: E[En]

- hm? + mh

2
m, 4m.m. + 6m2m )

31 1

m?{3oh + 1906}, for small o.

denote the mean of a sample of size n.

= exp(y + 02/2)
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THEOREM A-3: The second central moment of En is EZ[C] 62/n.
n x, 2
Proof: E‘(E )ZI = E[( e '/n) ‘
n !
i=1
X, X,

2x,
=El):e Pe2 Y et

i=1 i#)

(nm2 +n{n - 1) m?)/n2

]

(exp(Zu + 202) + (n-1) exp(2n + 02))/n

EI(En)Zl - EZIEnI = exp(2u + 02){exp(02) - lf/n » QED
Corollary: |If A denotes the coefficient of variation of En’ then AZ = dz/n.
THEGREM A-4:

Ellog(En)l ST 02(n -1)/2n - oh(n - 1)/lm2

- 06(n - 1)(n - 6)/12n3, for small o.

Proof:

E[Iog(i ezi/n)

i=1

E[Iog(exp(p + 02/2) + i{exp(zi) - exp(u + 02/2)}/n)]
=1

u o+ 02/2

+ E[log(l + 3 {exp(zi) - exp(u + 02/2)}/nexp(p + 02/2))]
i=1
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Since i
tog(1 +w) = w - wh/2 + w3 - Wik + w2r5 - wore q
Ellog(€ )] = -+ o%/2 - ns2/2n2 + (30" + 4®)/3n3

n (30" + 196%) /80" - 3n(n - 1)5"/tn"

+ 10n(n - 1)(36"52)/5n° =15n(n - 1) (n - 2)6%/6n®
Ignoring terms of order 06/nh , 08, or less. Then

E[log(€ )1= u + oZ(n - 1)/2n - o (1/bn - 1/n2 + 37403 + 3/4n2 - 3/4n3)
+ 06(-1/12n + 4/3n2 - 19/1m3 - 3/‘4n2 + 3/lm3

+ 6/n3 - 5/203) - QED

F— " e Sy

THEOREM A-5: If

. ~ - - 2 2
He log{cn‘/1+A/‘/l+6 }

|
i then
f : E[;C] =y o+ 06(n - 1)/3n3
i
Proof
]
- 1 2 2 2
7 log {(1 +8°/n)/(1 + 6 )} = 5%-]09 {1 + 34 /n}n - % log(1 + §2)

= 5%-109 {l + 624 (n-1) 62+ (- 1)(n - 2)66/6n2} -2/

Ty log{[1 + 62][1 + (n - 1)6“/2n + (n -1 - 2)66/6n2 - (n - 1)56/2n]}
- 02/2
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= o2/2n + 2—]n~ [(n - 1)(01’ + 06)/2n + 06(n2 -3+ 2 - 3n2 + 3n)/6n2] - o%/2

= - 02(n - 1)/2n + ob(n - l)/lon2 + 06[n2 - 3n + 2]/12n3

and the theorem follows from A-4. QED

A~

From Theorem A-5, u is an asymptotically unbiased estimate of 1

c
could then proceed in the same way with the demands. The result would be that

He = Hp would be an asymptotically unbiased estimate of He T Mp- The median

reliability would then be

R = e ((;c il lA‘n)/ °c2 + °02)

which is Equation 3-5. Equation 3-2 follows from this and Theorem A-1.

¢
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APPENDIX B

DERIVATION OF EQUATIONS 3-6 AND 3-7

What is the variance of the reliability, given the same notation as in

Appendix A? From that discussion, we have

R = ¢(Tx + A)
where

x = N(0, 1).
The variance is

oﬁ = J:m d)z(Tx + A) f(x) dx ~ R2
Let

R = o(A),

the median reliability. We have two approximations for 02

and the other for

R,

one for values T < 0.3

T > 0.3. These are tabulated for different values of R and T

and compared with the values from numerical integration (see Table B-1). The first

approximation was uncovered as follows: Let

My (7)

Then

Mé(T)

My(T)

J""’ ¢2(Tx + A) f(x) dx.

-0

fw 2x®(Tx + A) f(Tx + A) f(x) dx

J.w 2x2f(x) dx fz(Tx + A) + o(Tx + A) f'(Tx + A)

-
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M (T)

(1)

b Since
£1(x)
£1{x)
£'(x)
we have

MZ(O)

o et et .~ <A o -

”5(0)

13(0)
M;‘(O)

M;KO)

et —— i P A——

My (T)

1]

=

=

Expansion around T =0 then gives

1§

J. 2x3f(x) dx[3ff' + of"]

- oo

J’ thf(x) dx[3f|2 + 4FF" + (Pf"'],

=00

5 - ,_4-.0»‘ e e . fe

-xf(x) :
!
(x2 - 1) £(x) 7

(-x3 + 3x) f(x)

¢2 (A)

0

2F(A) [F(A) - Ae(A)]
0

65 (A) [3A2F(A) + b(A% - 1) f(A) + (-A3 + 3A) ¢(A)]

82 (A) + T2F(A)[F(A) - A®(A)]

+1AHM[HM§MZ-u}+¢M)bﬁa-%ﬂ/h
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Similarly:

R(T)

R'(T)

RII(T)

ﬁ"'(T)

Rnu(-r)

R(0)

R' (0)
R''(0)
R"(0)

ﬁnn( 0)

R(T)

RZ(T)

[}

I o (Tx + A) f(x) dx

fm xf(Tx + A) f(x) d
[ e
x“f1 (Tx + A) f(x)

fm x3f“(Tx + A) F(x)

-0

fm x“f"'(Tx + A) f(x)

¢ (A)

-Af(A)
0

3AF(A) [3 - A%)

¢(A) - T2Af(A)/2 + r“

02(R) - T2AF(A)4(A) +

X
dx
dx

dx

Af(A) (3 - A%]/8

T*AF(A) [AF(A) + ¢(A)]3 - A2}1/4




g 7 St =

1262(a) + T2 (A) (787 - & - A21/4

[}
n

N

M, (T) - RZ(T)
F2(a) T2(1 + 1238272 - 1))

£2 (A /CVI + 372/2) / (1 + 12)

1

and our first approximation is

op f(A/\h + 372/2) T/\h + 72, small T.

For our second approximation, we notice that (see Table B-1)

s s
4R(1 - R)l , large T.

A=0

2 2
g = ¢

R R

2

All we need, therefore, is %R

=0

THEOREM B-1:

o2 = 0.25 - (1/7) cot™ ' V1 + 272
A=0
Proof:
BMZ(T)/BA = ZJ. 2(Tx + A) f(Tx + A) f(x) dx

(1/7) me ¢(Tx + A) exp(~{[Tx + A]2 + XZ}/Z) dx

If we make the substitution

y = xm+AT/VI +TZ
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we have
aMZ(T)/aA = (1/mn) ]:: ®(Tv/m + A/(1 + TZ))
exp(—{yz + A%/« TZ)}/Z) dy/m
= 2f(A') J.m o(T'y + A") f(y) dy/\/T_:i;z
where
A' = A/ 1+ T
roerfVie R
A = A'/ 1+ 72

Then the algebra of Theorem A-1 gives

SMZ(T)/BA

2f(A')4>(A" \ﬁ T'z)/\/l + 72

aMZ(T)/aA'

2f(A‘)¢(A‘ 1+ 2T2>

AI
MZ(T) = 2 f f(w)¢>(w/V1 + 2T2)dw
Now let

ro= l/Vl + 2T2

A|
M2(r) = 2!:m fw)d{rw) dw




e cia 0

Ll

Al
sz(r)/Br 2 J- wf(w) f(rw) dw

= (1/n) J-Al exp(-{r2 + l}wz/Z) wdw f

= —exp(-A'Z(r2 + 1)/2)/ﬂ(f2 + 1)

= -exp(-Azrz)/n(r2 + 1)

Now, if A = 0, then R =0.5 and

r
; My(r) = 0.5 -.I' dr/n(r? + 1) = 0.5 - (1/) tan " (r)
o
2 -1 ;
P 0.25 - {1/7) tan "(r) - QED ,

C
I

- ————

*
: From ihis, we could get an approximation for extremely large T (small r):

My (r) = 0.5 - r/u 4 r3(A2 + 1)/3n
oé = 0.5 - r/7 + r3(A2 +1)/3n - ﬁz.
P Y - & - & . e . - - - .
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Kaman AviDyne Physics International Co.
ATTN: G. Zartarian ATIN: F. Sauer
ATTN: N. Hobbs ATTN: R. Swift
ATTN: Library ATIN: C. Vincent
ATTN: E. Criscione ATTN: E. Moore
ATTN: L. Behrmann
Kaman Sciences Corp. ATTN: Technical Library
ATTN: F. Shelton
ATTN: Library University of Pittsburgh
ATTN: D. Sachs ATTN: M. Willims, Jr,
Karagozian and Case R & D Associates
ATTN: J. Karagozian ATTN: P. Rausch
ATTN: A. Field
Lockheed Missiles & Space Co., Inc. ATTN: R. Port
ATTN: B. Almroth ATTN: J. Lewis
ATTN: T. Geers ATTN: Technical Information Center
ATTN: A. Latter
Lockheed Missiles & Space Co., Inc. ATTN: C. MacDonald
ATIN: TIC-Library ATTN: W. Wright, Jr.
ATTN: P. Haas
Management Science Associates
ATTN: K. Kaplan Rand Corp.
ATTN: A. Laupa
Martin Marijetta Corp. ATTN: C. Mow
ATTN: G. Fotieo ATTN: Library

ATTN: A. Cowan
Science Applications, Inc.
Martin Marietta Corp. ATTN: Technical Library
ATTN: J. Donathan
Science Applications, Inc.
University of Massachusetts ATTN: S. Oston
ATTN: W. Nash
Science Applications, Inc.
McDonnell Douglas Corp. ATTN: D. Maxwell
ATTN: R. Halprin ATTN: R, Hoffman
ATTN: D. Bernstein
Merritt CASES, Inc.

ATTN: J. Merritt Science Applications, Inc.

ATTN: Library ATTN: G. Binninger
ATTN: B. Chambers 11I
Meteorology Research, Inc. ATTN: W. Layson

ATTN: W. Green
Southwest Research Institute

. Mitre Corp. ATIN: A. Wenzel

i ATIN: Director ATTN: W. Baker

: Nathan M. Newmark Consult. Eng. Svcs. SRI International

R ATTN: J. Haltiwanger ATTN: G. Abrahamson

§ ATTN: N. Newmark ATTN: W. Wilkinson

! ATTN: W. Han

l Systems, Science & Software, Inc.

i University of New Mexico ATTN: T. Riney
ATTN: G. Triandafalidis ATTN: T. Cherry

ATTN: Library
University of Oklahoma ATIN: D. Grine

ATTN: J. Thompson ATTN: T. McKinley

ATTN: R. Sedgewick

Pacific-Sierra Research Corp.
ATIN: H. Brode Teledyne Brown Engineering

ATTN: J. Ravenscraft

Pacifica Technology

ATTN: R. Allen Terra Tek, Inc.
ATTN: R. Bjork ATIN: Library
ATTN: G. Kent ATTN: S. Green

ATIN: A. Jones
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Tetra Tech, Inc.

ATTN: Library

ATTN: L. Hwang

Texas A & M University System
ATTN: H. Coyle

TRW Defense & Space Sys. Group
ATTN: P. Bhutta
ATTN: D. Jortner
ATTN: B. Sussholtz
ATTN: A. Feldman
ATTN: A. Narevsky

2 cy ATTN: N. Lipner

TRW Defense & Space Sys. Group
ATTN: E. Wong
ATTN: F. Pieper
ATTN: G. Hulcher

2 cy ATTN: P. Dai

Weidlinger Assoc., Consulting Engineers
ATTN:  J. McCormick
ATTN: M. Baron

ATTN: Technical Information Center

Weidlinger Assoc., Consulting Engineers
ATTN: J. Isenberg

Westinghouse Electric Corp.
ATTN: W. Volz
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